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Abstract 
A new algorithm, FlexCryst, is presented for fast crystal 
structure prediction. The algorithm differs from existing 
algorithms in that it performs the analysis on the basis 
of only a single molecule and uses potentials for scoring 
energy that are derived statistically from a set of data on 
molecular structures. In a first step, the algorithm creates 
various potential unit cells. In the second step, a set 
of candidates for translation vectors for corresponding 
crystals is generated. In the third step, the algorithm 
selects triples of candidate vectors to form potential 
crystal structures. The fourth step ranks the crystal 
structures with respec t to their energy as estimated by 
a suitable scoring function. In the last step, the crystal 
structures are clustered according to a newly defined 
measure of similarity for crystal structures. At the mo- 
ment, the program can handle only triclinic crystals with 
one molecule per asymmetric unit. The algorithm was 
tested on a set of 131 experimentally resolved crystals 
of space group PI and 95 crystals of space group P1 
from the Cambridge Structural Database. For P1, in 129 
cases (98%), the observed crystal structure is among the 
crystal structures generated by the algorithm. The run 
time of the algorithm is a few seconds per molecule on a 
standard workstation. For PI, the experimental structure 
has been found among the proposed structures in 81 
cases (85%). Owing to the more complex unit cell for 
this space group, the run time increases to about 2 h per 
molecule. 

I. Introduction 
The prediction of crystals formed by organic molecules 
is of interest for various reasons. With knowledge of the 
crystal structure, we can estimate the color and conduc- 
tivity and derive from the space group nonlinear optical 
effects (Williams, 1983), pyroelectricity, ferroelectricity 
and piezoelectricity (Borchardt-Ott, 1976; Hahn & Klap- 
per, 1995), ferromagnetism (Veciana, Cirujeda, Rovira 
& Vidal-Goncedo, 1995) and triboluminescence (Zink, 
1978). An important advantage of using organic com- 
pounds is that their molecular structures may be tailored 
to enhance their desired physical properties. 

Existing algorithms for crystal structure prediction are 
based on the atom-atom potentials approach. 50 years 

ago, this idea was formulated for organic molecules 
(Westheimer & Mayer, 1946) and applied to various 
organic reactions (Hill, 1948). It was transferred to 
crystal structures by Kitaigorodskii (1951). This ap- 
proach is based on the assumption that the total inter- 
action energy can be expressed as a sum of pairwise 
contributions between atoms of the molecules mak- 
ing up the crystal. In general, the potential contains 
three terms, which can be interpreted as a Coulombic 
term, the dispersion energy and the exchange repul- 
sion energy. The second and the third terms together 
are called the Lennard-Jones potential or the Bucking- 
ham potential, depending on their analytical expression. 
Several combinations of these potentials are used in 
the literature: Buckingham potential alone (Filippini & 
Gavezotti, 1993), Buckingham potential and Coulombic 
term (Xiao & Williams, 1993) or Lennard-Jones poten- 
tial and Coulombic term (Shoda, Yamahara, Okazaki 
& Williams, 1994). This approach towards estimating 
energy is tantamount to the existing force-field methods 
if we omit the terms for bonds, angles and dihedral 
angles. The parameters for the potentials are derived with 
ab initio methods or from experimental data. The heuris- 
tic form of the potentials requires parameter sets that 
are specific to restricted classes of organic molecules. 
After determination of the parameter set, the confor- 
mational space is searched for the global minimum. 
This is done by starting with the molecule, constructing 
the crystal in a certain space group and optimizing 
the degrees of freedom by different gradient methods, 
such as pseudo-annealing (Shoda, Yamahara, Okazaki & 
Williams, 1995), Newton-Raphson or steepest descent 
(Tajima et al., 1995). Usually, the optimization starts 
with a random structure and searches a nearby minimum. 
This procedure is repeated several times, resulting in a 
set of local minima. These minima are then ranked with 
respect to their energy, as estimated by the potential, 
and the highest ranking, i.e. lowest-energy minimum, is 
taken to be the global minimum. This global minimum 
should coincide with the experimentally observed crystal 
structure. In practice, this can be a very difficult task, 
first, because the potentials are inaccurate and, second, 
because thousands of quite different local minima can 
fall within a very narrow energy range (40 kJ mole-I),  
as has been witnessed for monosaccharides (van Eijck, 
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Mooij & Kroon, 1995). Thus, today, crystal predictors 
are satisfied if the observed crystal structure is among 
the highest-ranking solutions found by the algorithm. 
A comprehensive overview of methods for predicting 
crystal structures is given by Desiraju (1989). 

2. The algorithm FlexCryst 

Our new algorithm does not use a search for local 
minima based on classical potentials in order to optimize 
conformations. Rather, we model the conformational 
space of the potential crystal structures discretely and 
perform a combinatorial search on this space. Our scor- 
ing function is a pair potential that is derived statistically 
from a subset of observed crystal structures taken from 
the Cambridge Structural Database (Allen & Kennard, 
1993). 

In the first step, the algorithm analyzes a given fixed 
conformation of the organic molecule using the approach 
taken by the program FlexX (Rarey, Kramer & Lengauer, 
1995; Rarey, Kramer, Lengauer & Klebe, 1996; Rarey, 
Wefing & Lengauer, 1996). This program was devel- 
oped for the prediction of the molecular interaction 
between protein receptors and small organic ligands. 
The approach models intermolecular interactions both 
geometrically and chemically. In general, an interaction 
is formed if specific geometric constraints are met by 
the interaction partners, which are functional groups. 
For each interaction formed, its contribution to energy 
is rated by a statistically derived scoring function. FlexX 
models hydrogen bonds, phenyl ring-phenyl ring, phenyl 
ring-methyl and phenyl ring-amide group interactions 
and is based on the work of Klebe & Mietzner (1994) 
and B/Shm (1992, 1994). The geometric constraints have 
the same structure for all types of interaction. Specif- 
ically, an interaction between two molecular groups is 
represented by an interaction cen ter -  which is a point in 
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Fig. 1. Modeling molecular interactions with FlexX. (a) Different 
shapes of interaction surfaces. (b) Model of a hydrogen bond. 

space usually coinciding with the location of an atom or 
the center of a ring - and parts of a spherical interaction 
surface at a specific interaction distance around the 
interaction center, see Fig. 1. An interaction between 
two groups is formed if the interaction center of the 
first group lies on the interaction surface of the second 
group and vice versa. In order to keep the model discrete, 
we represent the interaction surface of the interaction 
partners by a finite point set. Based on this model, the 
algorithm generates dimers and ranks their stability. In 
general, there are six degrees of freedom for docking 
two rigid molecules: three for the translation and three 
for the rotation of the two molecules relative to each 
other. 

In the following, we restrict ourselves to triclinic 
crystals with one molecule per asymmetric cell. Here 
we can distinguish between two cases, space groups 
P1 and P1. For P1, the molecule is identical to the 
unit cell (without the lattice information) but in the 
case of P1 the unit cell contains two molecules. These 
molecules are symmetry related by an inversion center. 
Therefore, in the case of P i ,  we first search for possible 
inversion centers that map interaction centers of the 
molecule onto interaction surface points. A vector of 
one of these inversion centers can be calculated as the 
sum of one vector of an interaction surface point and 
a vector of an interaction center divided by two. Each 
of these unit cells is assigned a rank by our scoring 
function. The 50 highest-ranking cells are retained for 
further computation. After the selection of these unit 
cells, the interaction points are inverted as well. Each of 
the unit cells is defined by the molecule and one three- 
dimensional vector for the inversion center, in the case 
of P i ,  and by the molecule only, in the case of P1. 

For a given unit cell, the remaining problem is to 
determine the three translation vectors spanning the 
crystal. In order to calculate possible translation vectors, 
the interaction center of one unit cell can be matched 
with a point on the interaction surface of a neighboring 
unit cell. This is tantamount to connecting the interaction 
center with the respective interaction surface point and 
doing so within the same molecule (see Fig. 2). In 
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Fig. 2. An interaction between two unit cells, each containing one 
oxalic acid. The interaction center of one molecule lies on the 
interaction surface of the other molecule. The resulting translation 
vector is identical to the vector connecting the interaction center 
with the interaction surface inside the same molecule. 
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this way, we obtain all possible translation vectors by 
considering just a single molecule. The whole crys- 
tal must be spanned by three of these vectors (a, b, 
e), provided that it is closely packed and all relevant 
molecular interactions are represented by the model. 
Most naively, one would look for a crystal structure 
by repeatedly taking three vectors out of the candidate 
set and calculating the crystal energy. To render this 
approach computationally feasible, the search for the 
correct triple of vectors has to be structured. Towards 
this end, we impose several constraints on the triples we 
take into consideration. 

(i) First, we strongly reduce the number of differ- 
ent vectors by using a clustering method. This step 
introduces certain inaccuracies into the process but, at 
the same time, it reduces the size of the search space 
sufficiently to render the subsequent search feasible. 

There are several methods of adaptive clustering 
available (see, for instance, Rarey, Wefing & Lengauer, 
1996). For the present application, we prefer a uniform 
clustering method that maps the vectors onto a three- 
dimensional mesh (grid constraint). The reasons for 
this choice are, first, that a mesh allows a natural 
procedure of estimating the accuracy of the model and, 
second, that the subsequent constraints, especially the 
triangle constraint, depend on a uniform discretization. 
We choose 1/~ as the mesh size. This value presents a 
reasonable trade off between accuracy and run time. 

(ii) Second, we restrict our attention to vectors whose 
energy is small (energy constraint for vectors). For this 
purpose, the energy of the vectors is evaluated, the 
vectors are ranked with respect to their energy and only 
highest-ranking vectors, i.e. those with lowest energy, 
are taken into account. In our calculations, we retained 
the 500 best vectors. 

(iii) Third, we require that at least two (a, b without 
loss of generality) of the three vectors have to fulfill the 
following constraint (triangle constraint): there must be 
a vector d among the 500 best ranking candidates such 
that 

d = + ( a - b ) .  (1) 

Vector a defines a one-dimensional chain. Vectors b 
and d represent interaction vectors of two molecules of 
the chain with one molecule in an adjacent chain. The 
vectors a and b define a crystal sheet. The relationship 
described by (1) is always fulfilled if  the surfaces 
are strictly convex, the three-dimensional shapes are 
periodically close packed in a sheet, and any surface- 
to-surface vector of the shape can be selected. In Fig. 3, 
the situation is illustrated for discs, and Fig. 4 shows a 
counterexample for shapes that are not strictly convex. 

(iv) Fourth, in further calculations, we consider only 
triangles whose energy is small (energy constraint for 
triangles). Analogously to the energy constraint for the 
vectors, the energy of the triangles, which is just the 
sum of the energy of the three vectors a, b and d, is 

calculated. The triangles are ranked with respect to their 
energy and the 200 highest ranking of them are retained. 
Each crystal structure is then built up from one of these 
two-dimensional triangles plus one of the 500 vectors, 
thereby completing the the three-dimensional unit cell. 

(v) Fifth, we require the density to be within a certain 
range (density constraint). The density of most known 
organic crystals is in the range 1.1 to 1.6 g cm -3. These 
are the values chosen in our calculations. An advantage 
of this constraint is that the density is an easily available 
property of crystals. If the density is known but the 
structure is unknown, FlexCryst can be used to calculate 
possible structures with the required density. 

(vi) Sixth, we apply an energy constraint for crystals. 
The algorithm generates a large number of crystal struc- 
tures by combining the vectors a and b satisfying the 
triangle constraint with a vector e satisfying the density 
constraint. The vectors a and b span the crystal plane and 
the vector c completes the elementary cell. The scoring 
function is evaluated for all crystal structures meeting all 
constraints. Afterwards, the crystal structures are ranked 
with respect to their energy. For the clustering process, 
we retain a certain number of these crystals - 1000 for 
space group P1 and 10 000 for P1. The necessarily larger 
number of structures to be retained for P1 is due to the 
larger number of degrees of freedom. 

Finally, the energetically lowest structure of each 
cluster is compared to the experimental structure. 

Fig. 3. For convex surfaces, the triangle constraint is always met. 
Vector d is among the vectors producing a contact between two 
shapes. 
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Fig. 4. For concave surfaces, the triangle constraint may be violated. 
Vector d is not among the vectors producing a contact between two 
shapes. 
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3. Scoring function 

A well known deductive approach to protein structure 
prediction is to derive potentials from data on resolved 
molecular structures in a statistical fashion (Sippl, 1990, 
1993; Sun, 1993). The similarity of Boltzmann statistics 
to the statistics of interactions was first noted for the 
distribution of the conformations of the residues of 
proteins over the angles qo, ~/, and X (Pohl, 1971). The 
theoretical background of this fact was formulated 20 
years later (Gutin, Badretinov & Finkelstein, 1992). The 
idea of statistically derived potentials can be carried over 
to calculating the intermolecular potentials of organic 
compounds in crystals. 

With the inverse Boltzmann equation, the potential 
energy between two interacting atoms A~t and Ajj of dif- 
ferent molecules I and J (only intermolecular interactions 
are of interest here) can be written as 

Eatom ( ro, i, l, j ,  J) 

= Eij + NLkTIog l i m  [Pi.(roo)4/Pij(ro)~c~] 
t o o  ----* ( x 3  'J 

(2) 

with 

r 0 = Ir(Ai,) - r(a.)l. (3) 

Pu(ro) is the probability that the shell at distance r 0 
around an atom of type i contains an atom of type j 
and vice versa. Pij(r~) is the probability of finding two 
atoms independently of each other, as in the case of an 
infinite distance between the two atoms. This probability 
can also be expressed by the average densities pi and pj 
of the atom types in the crystals. 

lim [P(r~)/r2oo] o~ Pi * Pj" (4) 
r ~ ---+ 0 0  

We estimated the value of the integration constant E~j 
and the decoupled probability Pij(roo) by the follow- 
ing procedure. We statistically derive the pair potential 
function with undetermined shift E/j., applying (2) to the 
atom-pair correlation function. In order to have enough 
data to evaluate the atom-pair correlation function (as 
an example we show the function for H - - H  in Fig. 5), 
we used the Cambridge Structural Database (Allen & 
Kennard, 1993). We parameterized the most relevant in- 
teractions (see Fig. 6) and disregarded the contributions 
of other interactions. An extension to other chemical 
elements by providing the additional pair correlation 
functions of these elements is straightforward. The only 
limitation is the sparsity of available data for several 
interaction pairs. For each interaction, we evaluated the 
alphabetically first 1000 different crystals containing the 
corresponding interaction. This number of structures is 
sufficiently large for the calibration, as can be argued 
from the fact that the pair potential functions become 
almost constant for distances above 4.0/~, see e.g. Fig. 

9. This is to be expected for decoupled probabilities. For 
this reason, we replace P(r~)  by the value of P(4.0/~) 
and disregard energy contributions for atom pairs with 
larger distances than 4.0 A. 

To determine Ei., w e  made use of the fact that the 
volume of predictecJ crystals depends o n  E i. For increas- e/. 
ing E o, the volume of the predicted crystals increases 
as well. This is caused by the mostly monotonically 
declining pair energy functions in the range of the van 
der Waals contacts. Calibration of an average shift E o 
for all pair interactions such that the predicted and 
experimental volumes of crystals considered are equal 
gives us a reasonable value for Eij. For our training set, 
we obtain a value of -2 .85  kJ mole - l .  In Fig. 7, we 
plot the experimental versus the calculated volume. The 
straight line is the line of regression for the calculated 
volumes and should be identical to the dashed line 
on which the experimental volume is the same as the 
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Fig. 5. The atom-pair correlation function for the H - - H  interaction. 
P(H-- -H)  is the probability of finding an intermolecular distance of 
r /~ between two H atoms. 

! l T 
~ _ _  C 

i I 

. . . . .  :J*l 

i 

l 

Fig. 6. A list of included atom-pair mteractmns. Parameterized atom 
pairs are indicated by 0. 
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calculated volume. The influence of the value Eij on the 
calculated volumes can be seen in Fig. 8, where a value 
of 3.35 kJ mole- l  was assumed for Eij. 

Replacing Eij and P ( r ) ,  one can rewrite the inverse 
Boltzmann equation as 

E,tom(ro, i , l , j ,J) 
-0 .68  kcal mole-  i 

. . . . .  P(4.0 A)r { 
= -t-NLtcilOgp(ro)4.0 ,ff~e 

0 kcal mole-I  

if r o _< 4 A 

i f r  o > 4A.  

(5) 

As one example of the determined pair energy func- 
tions, we show the potential function for H ~ H  in Fig. 
9. This curve deviates considerably from classical pair 
potential functions; in particular, one cannot recognize 
a clear van der Waals minimum. However, note that 

this function includes the interatomic stabilization of 
the surface interactions and, in addition, the molecules'  
interior intramolecular stabilization, which results in the 
unexpected shape of the curve. 

The hydrogen bond provides an example of an inter- 
action that involves pairs of atomic groups rather than 
just pairs of single atoms. The hydrogen bond can be 
modeled cooperatively by the atom-pair potentials for 
H - - O  and O--O,  see Fig. 10. In hydrogen bonds, one 
H - - O  distance is around 0.9/~, the other is around 2.0/~ 
and the H--O---H angle is around 180 °. The H - - O  
potential has a minimum around 2.0 A and the O - - O  
potential has a minimum at 2.8 A. These minima model 
the geometry of the hydrogen bond quite accurately, i.e. 
to within about 0.1 A. 

The pair potential of O---O has a high-energy local 
minimum at 2.0 A. This minimum arises from a single 
observed O---O distance of 2.0/~, in the Cambridge 
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Structural Database. We assume that the corresponding 
structure is in error. Such problems occur with other 
types of interaction as well. However, such minima 
influence the potential slightly because their energy is 
large. 

The intermolecular interaction energy between two 
molecules I and J with n o atoms is formulated as a sum 
of atom-pair interactions: 

no no 

Ettimer(l,J) = ~_, ~_, Ea tom( i , l , j , J  ). (6) 
i=1 j=l  

The total stabilization energy of one molecule in the 
crystal is formulated as a sum of dimer energies: 

N 

f c r y s t a l ( / )  - -  ~ ]  fdimer(I,J ). ( 7 )  
J= I 

The number N of pairs to consider depends on the 
number of adjacent cells nneighbor in each of the three 
directions to be included. N and nneighbor are related as 
follows: 

N =  [(2nneighbor-Jr- 1)  3 - -  1]/2. (8) 

In our calculations, only first neighbors have been con- 
sidered. Therefore, N - 13. Though the elementary cell 
is surrounded by 26 cells, only half of the interactions 
must be taken into account because the others are related 
by symmetry. 

4. Similarity and clustering of crystals 

A widely discussed problem in the literature is how to 
define the notion of similarity between different crystal 
structures. With respect to our problem, we can limit 
ourselves to crystals formed by a single molecule. At 
present, two approaches are most widely used. The 
first approach (Karfunkel, Rohde, Leusen, Gdanitz & 
Rihs, 1993) takes advantage of existing programs for 
comparison between spectra. A spectrum transforms 
direct space, containing the coordinates of the atoms, 
to frequency space, describing the spatial periodicity of 
the atoms. The second approach is to present the unit 
cell in a normal form of the unit cell (Parth6 & Gelato, 
1984) and to calculate the square deviation between the 
atoms of the two unit cells (Burzlaff & Rothammel, 
1992; Dzyabchenko, 1994). 

For our purposes, we propose a third method, which 
exploits the fact that we are always dealing with the 
same molecule, which is rigid and fixed in space. Our 
algorithm constructs the unit cell of the crystal of just 
this reference molecule. For the comparison of two 
structures, the problem is reduced to comparison of the 
corresponding unit cell. In the case of P1, this means 
that the translation vectors must be similar. For the space 

group P1, the inversion center also has to be taken into 
consideration. We first concentrate on how to check the 
identity for the space group P1. 

Let as assume that two crystal structures of the same 
molecule are described by the bases B and B', respec- 
tively. Each of these bases consists of three translation 
vectors: 

B =  (b, ,b 2,b3), B ' =  (b' 1,b 2,b;). (9) 

Each of these sets of vectors define a point lattice X: 

X = B n : n  E Z 3. (10) 

A lattice X' is a sublattice of a lattice X if, for i = 1, 2, 3, 
b I is an integer linear combination of the vectors b f  

! 
X'_CX if 3t i ' B t i = b ; A t  i E Z  3 A i E  {1,2,3}.  

(11) 

This condition is easy to check. To prove the identity 
of the two lattices, it would be necessary to check this 
condition in both directions. Proper subsets, necessarily 
describing low-density crystals, are already screened 
out from the possible crystal structures by the densi ty  
constraint ,  however. 

To define a similarity index, we introduce the quantity 
S: 

s = max{lBr,  I } with rij = [t o + 0.5J - tij, 

i E {1,2,3},  j E {1,2,3}.  (12) 

That this quantity is an useful notion of similarity can 
be seen as follows. If X = X', s is zero. If we change 
continuously one of the translation vectors of lattice X', 
the function increases monotonically. In our calculations, 
we consider crystals to be similar as long as s is below 
a certain threshold (1 ]k). This coincides with the mesh 
size for discretization. As a consequence, crystals are 
considered to be similar if each translation vector of X 
is identical or adjacent to a translation vector of X' on. 
the mesh of discretization (diagonals excluded). 

For the case of P i ,  one more vector has to be added 
on the right-hand side of the similarity quantity s. Two 
inversion centers are symmetry related and will not be 
distinguished if  twice the difference of their vec to r s  114 

! 
and b 4 Can be expressed as an integer linear combination 
t 4 of the basis: 

2(b 4 - ha) = Bt 4. (13) 

Analogously to (12), r 4 is defined and the quantity s 
extended. 

s = max{ IBr/I } with rij -- [_t 0 + 0.5J - t O, 

i E  {1,2 ,3 ,4} ,  j E  {1,2,3}.  (14) 
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5. Results for P1 

To validate the algorithm, we extracted a set of 131 crys- 
tals of space group P1 from the Cambridge Structural 
Database. We selected all organic crystals containing 
only the elements H, C, N, O, F, P, S and Cl of 
space group P1. The complete search expression can be 
found in Appendix A. The molecular structure formulas 
were given as input to the program and the generated 
candidates for the three-dimensional crystal structure 
were compared to the experimentally observed crystal 
structure. As is well known, H atoms are often missing 
or are not precisely located in crystallographic data. For 
this reason, the data were read out from the Cambridge 
Structural Database and the SYBYL system (TRIPOS 

Associates, 1994) was used to add missing H atoms. 
Then we input the hydrogen-completed structures to 
FlexX. The interaction centers and interaction surfaces 
were calculated with FlexX. These results were collected 
in an interaction file containing the interaction surface 
points and interaction centers. The program FlexCryst 
calculated from that interaction file and the molecular 
information of the structure file the various potential 
crystal structures. Finally, the crystallographic data, cell 
length and cell angles of the structure file were used to 
compare the computed structures to the observed crystal 
structure. 

In 129 of 131 cases (98%) (Fig. 11), the program 
succeeded in finding a structure that is either identical 
or similar to the experimental structure. Here we applied 

crystal structure was detected by FlexCryst (129 cases--98%) 
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DOHHIR(6) DOZMIO(1) DUMCET(1) EACJEX(1) ECPRPR01(16) 

FADGEW(1) FAKGAZ01(1) FALKAE(16) FAMDUS(4) FATXUT(17) 

FAVSUQ(1) FEPZOP(4) FETWOQ(6) FEXCOA(1) FITVOT(1) 

FIYJIG(1) FOMANN(1) FUNVUF(4) FUPVAN(3) FUXBIJ(93) 

FUXBIJ01(50) GEYMEC(1) GIPJEU(33) GOJHIW(3) HAGFAW(2) 

HCARDO(1) HCARDO01(1) HOLOTM(8) HPICRB(2)  HTENTX10(1) 

JANDUX(1) JECYIZ(1) J IHREX(1)  J I J X E F ( 1 )  JIPBIT(1) 

JOVZAV(1) JUFTUZ(1) KANDUY(1) KANTOI(7) KEGBAZ(5) 

KERSIJ(1) KIJCAH(3) KITLUU(1) KOCHIT(1)  KOHNAW(1) 

KOPROW(12) LAWKUP(9) LCDMPP01(13) LCDMPP10(29) LEDNUD(2) 

LEKVIG(1) LEMZAE(12) LETBOB(1) LYSDOL(4) MAMNAC(1) 

NALCYS02(1) OACGAP(1) OHWTHN(1) OMAPBD(1) PAJSOI(1) 

PATCUI(1) PATPYS(1) PEVLOR(3) PICSEZ(124) PICTIE(5) 

PIKYIR(14) PMNTBZ(2) PROGLE20(2) RPPYPY20(3) SESHUTll(2) 

SEZLUE(4) TEOXDE01(8) THPGFA(2) VARHUR(6) VARWUG(4) 

VEGJOG(1) VEKZAM(1) VITREV(4) VOBHEZ(1) VOBPEH(1) 

VOBPEH10(1) VOFFAX(131) VOXXUB(1) VOYVEK(1) WATCID(47) 

WICVUZ(4) WIKSEO(22) WINWEV(1) YABVUS(1) YAMBET(1) 

YEBGIV(17) YEHRIM(1) YIJBUO(1) YIPPAO(3)  YIPWAV(1) 

YOGVOF(1) YOKGIO(1) YUYHAB(9) ZAYWIJ(1) 

crystal structure was not detected by FlexCryst (2 cases=2%) 

FURCOU CILWOJ 

Fig. II. A complete list of the reference codes of calculated crystals of space group PI. If a structure was found that is similar to the 
experimentally observed structure, the rank is given in parentheses. 
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the notion of similarity described in §4. To check the 
reliability of the scoring function, the ranks of com- 
puted structures that were similar to the experimentally 
observed structure were calculated. Fig. 12 shows a plot 
of the result. In 68 cases, the experimentally observed 
structure is similar (in the above sense) to the minimally 
scoring computed structure. In 59 cases, there is a 
structure among the computed structures with ranks 
between 2 and 100 that is similar to the experimentally 
observed structure. In two cases, the highest-ranking 
similar computed structure has a rank above 100. Only 
in two cases did the program not find the experimental 
structure. In one of these cases (CILWOJ), the structure 
might be in error (Bocelli, 1986). Our calculations 
confirm this suggestion. The reason for the other case 
is still under investigation.* 

A complete list of the reference codes of the calcu- 
lated crystals is provided in Fig 11. The rank of the 
crystals found is given in parentheses. 

For all 131 crystals together, the elapsed computing 
time was 40 min (average time per crystal = 18 s) on a 
SUNTMUltraTM1 Workstation. The main reasons for the 
high speed compared to existing algorithms are that we 
avoid repeated optimization and that we use statistically 
calibrated potentials. It is not necessary to evaluate terms 
like Ar  -6 and Br -]2 (Lennard-Jones potential) or Ar -6 
and Be - o r  (Buckingham potential), respectively, in the 
most critical step. 

6. Results for Pi  

Our test set for space group P1 consists of the first 95 
entries of the CSD, with the same limitations as before. 
In particular, this means that the compound consists only 
of the elements H, C, N, O, F, P, S and CI. We applied 
the same options as in Appendix A for space group PI 
with the small differences listed there. 

The program succeeded in 81 cases (85%). In 11 
cases, the crystal with the lowest rank is similar to the 
experimental structure. For 76 cases, the experimental 
structure is among the first 1000 candidates. In five 
cases, the highest-ranking similar computed structure has 
a rank above 1000 up to 10 000. In 14 cases, the program 
did not find the experimental structure. The reasons 
for the latter set are still under investigation. In some 
cases, reasons include missing parametrized groups in 
FlexX (---CN in ACAMEL), lack of parametrized atom- 
pair potentials, as is the case for BABHAN containing 
deuterium. Sometimes, one of the constraints needed to 
be relaxed. For example, the compound ATZCXB has 
a density of p - 1.89gcm -3, which is outside our 

* In the course of our tests, we originally found 49 structures in the 
CSD that erroneously were reported to belong to space group PI 
instead of PI  or contained metals and, nevertheless, were flagged to be 
organics instead of metal-organics. In general, we reported such errors 
to the CSD group immediately and corrections in the databank were 
performed quickly. 

allowed range. Very lengthy molecules (ALAEUC10) 
are violating the energy constraint f o r  vectors because 
vectors connecting two chain ends are much higher in 
energy than vectors representing side-to-side contacts 
and these high-energy vectors are excluded by the energy 
constraint in the algorithm (Fig. 13). 

The ranking of the lowest-energy structure found to 
be similar to the experimental structure shows a much 
more diffuse pattern (Fig. 12) than in the case of P1. 

A full list of all considered entries of the CSD is 
given in Fig. 14. 

The larger number of degrees of freedom in the group 
P i  causes longer run times for crystal structures of this 
space group than for the simpler space group P1. The 
overall time was 136 h, which gives an average run time 
of 86 min per crystal. These results are still much faster 
and/or more accurate than other algorithms known to 

70- 

6 0  

5O 

~o 

2O 

o k J 
0 1 ~ 1 1 , ,  • J = = -  _ .  . • , ,  _ , . . . . . . . . .  L 

0 2 0  40  6 0  80  > 1 0 0  

rank  o l  s i m i l a r  s t ruc tu re  

Fig. 12. The lowest rank of any computed crystal structure that is 
similar to the experimentally observed crystal structure. For two 
crystals, this rank is larger than 100. 

15 .0  

10 .0  

s°Ik 
0.0 

0 
1 1 1 _ 1 _ l _ _ 1 ~  1 I I / l l l J i  _ 

100 200 >300 
rank of similar structure 

Fig. 13. The lowest rank of any computed crystal structure that is 
similar to the experimentally observed crystal structure. For 12 
crystals, this rank is larger than 300. 
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the authors. A recently published article favorably rates 
a novel method by Chaka, Zaniewski, Youngs, Tessier 
& Klopmann (1996) to a set of other methods. The 
computation time for the best method given in that paper 
is 2 h per structure on an CRAY-YMP for a parallelized 
version of the program. The probability of finding the 
crystal structure is reported to be 10 out of 16 (62%) for 
a manually selected set of crystals. 

7. Conclusions 

We have presented a discrete algorithm that detects the 
experimentally observed structure among the computed 
candidates in almost every case for the simple case of 
P1 with Z = 1 and in a large percentage of the cases 
of Pi  with Z -- 2. 

The speed of the program is several orders of mag- 
nitude faster than existing algorithms. Three ingredients 
are essential for this efficiency: performing an analysis 
of the intermolecular interaction as a preprocessing step, 
using a discrete configuration space, and reducing the 
energy calculation to simple table look-up. 

As the potentials are not restricted to predefined 
classes of functions, pair potentials with unusual forms 
are also possible, an example being the O--O pair 
potential with two minima. 

Instead of randomly choosing crystals for the statistics 
as we did, the potential can be adapted to a certain 
class of substances, e.g. only aromatic compounds, by 
including only crystals of the respective class into the 
statistical analysis. 

Replacing the atoms by functional groups is an easy 
way to extend the potentials from two-body interactions 
(atom-atom) to many-body interactions. 

The authors thank Dr P. Erk (BASF) for fruitful 
discussions and Dr H. Slot (University of Nijmegen) for 
kindly assisting them in using the Cambridge Structural 
Database. Furthermore, we are grateful to P. Lauwers, 
C. Lemmen, B. Kramer, C. Oligschl~iger, M. Rarey and 
S. Wefing for helpful comments on the paper. This 
research was performed as part of GMD's contribution 
to HLRZ (High Performance Computing Center). 

crystal structure was detected by FlexCryst (81 cases=85%) 

AABHTZ(406) ABZNPS(59) ACAMOX(512) ACINDD(57) ACMGHX(II) 

ACNODC(1) ACNPTH(74) ACNPTHI0(II) ACOHKT(4) ACPSTP(1) 

ACSLCBI0(240) ACTCBZ(34) ACTHBZ(229) ACVCHO(2) ADYPNL(8) 

AISMRS(23) ALXANM01(511) ALXANMI0(29) AMFPDO10(27) AMHPENI0(5) 

AMIMZAI0(1503) AMXBPMI0(1976) AMYTZL(16) ANTSTK(15) AOPCHY(1) 

APBTRN(7) APTSPN(5) ATBXYLI0(5) ATDZSA(387) ATZCXB(3127) 

AXBCHX(524) AZNAND(1) BAFKUO(43) BAFLEZ(193) BAGKIDI0(47) 

BAGPOO(372) BAGWUB(18) BAGXUC(53) BAHFIZ(115) BAHYUE(155) 

BAJRUZI0(7) BAJWIS(3) BAKCOF(1086) BAKDIA(84) BAKXOA(5) 

BAMFOK(15) BAMFUQ(146) BANGAY(ll) BANLUW(38) BARCAY(22) 

BARGOQ(1) BASVOG(1) BASXIC(309) BASXIC10(232) BAWMIV(720) 

BAYHIS(5) BAYNEU(1) BAZBIN(102) BDTPIM(ll) BEBCEQ(2) 

BEBCUG(20) BEBLOJ(7) BEBMAW(254) BEBWOU(249) BEBWUA(1986) 

BEBYEM(272) BECJEY(6) BECWUB10(17) BEDFAR(258) BEDHAT(45) 

BEDKIE(4) BEDXOX(1) BEFSIO(266) BEGBAQ(41) BEGCIZ(1) 

BEHCAS(8) BEHMHD(20) BEHXOB(79) BEJJIJ(1) BEJKEG(1) 

BEJMIM(6) 

crystal structure was not detected by FlexCryst 

reason unclear (14 cases=15%) 

ACAMEL ACMCPY ACYACR ALEUAC10 AMPCTZ 

APFPTS BABHAN BABROL BAGXAI BALRIP 

BARZUP BAZVON BDTPAE BEGDEW 

Fig. 14. A complete list of the reference codes of calculated crystals of space group PI. If a structure was found that is similar to the 
experimentally observed structure, the rank is given in parentheses. 
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APPENDIX A 

The complete search expression for extracting structures of space group P1 is given. We used QUEST3D. 

T1 *CONN 

NFRAG 1 
AT1 H 0 :XY 496 496 

END 

T2 *CONN 

NFRAG 1 
AT1 Br 0 :XY 496 496 

END 

T3 *CONN 

NFRAG 1 

AT1 B 0 :XY 496 496 

END 

T4 *CONN 

NFRAG 1 

AT1 As 0 :XY 496 496 

END 

T5 *CONN 
NFRAG 1 

AT1 I 0 :XY 496 496 

END 

T6 *CONN 
NFRAG 1 

AT1 Si 0 :XY 496 496 

END 

T7 *CONN 

NFRAG 1 

AT1 Se 0 :XY 496 496 

END 

COMMENT Turning ON "INSIST-ON-COORDS" 

SCREEN 153 

COMMENT Turning ON "INSIST-NO-POLYMERS" 

SCREEN -54 

COMMENT Turning ON "INSIST-NO-DISORDER" 

SCREEN 35 

COMMENT Turning ON " INSIST-PERFECT-MATCH" 

SCREEN 85 
COMMENT Turning ON " INSIST-RFACTOR<=I0%" 

SCREEN 88 

COMMENT Turning ON "INSIST-ERROR-FREE" 

SCREEN 33 

SCREEN 57 

SAVE FDAT 

T8 *SPACEGROUP 'pl ' 

T9 *ZVALUE .EQ. 1.0000 

TI0 *NRESIDUES .EQ. 1 

QUEST 

T8 .AND. T9 .AND. TI0 .AND. T1 .NOT. T2 .NOT.T3 .NOT.T4 .NOT. T5 .NOT. T6.NOT. T7 

For space group PI, ZVALUE.EQ.2 and in addition SCREEN -154 was used. 
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